mnp.evaluation.subselection_output
Module Contents
Classes
Abstact base class for all classes that have to generate output for a subselection of species. |
|
Basic properties of all output tables. |
|
Output table for a species subselection, where rows are species and columns carry information regarding the performance of the species in the model run. |
|
Output table for a species subselection. Table contains viability classes as rownames, species group names as columns and values are counts for each viability-class/species-group combination. |
|
Species GeoMap with the number of keypopulations exisiting at each pixel location |
|
Species GeoMap with the number of species assigned to the combined land types in each pixel location Ook wel bekend als de TOEKENNINGSKAART. |
|
Fraction key populations map. |
|
QGIS qlr file pointing to the land-types map in <cover>inputland_typesland_types.tif QLR file is populated with land types only that are coupled to one or more species in the species subselection. |
|
Functions
Identify how many species are coupled to each land type, considering only the species in this particular subselection and only the land types available in this MNP run. |
|
API
- class mnp.evaluation.subselection_output.SubselectionOutput(output_path: str)
Bases:
abc.ABCAbstact base class for all classes that have to generate output for a subselection of species.
Initialization
- abstractmethod create()
- abstractmethod to_file()
- class mnp.evaluation.subselection_output.Table(output_path)
Bases:
mnp.evaluation.subselection_output.SubselectionOutputBasic properties of all output tables.
Initialization
- abstractmethod create()
- to_file()
Write the table to CSV file.
- class mnp.evaluation.subselection_output.DetailedTable(subselection_evaluation: mnp.evaluation.subselection_evaluation.SubselectionEvaluation, species_models: weakref.ReferenceType, output_path: str)
Bases:
mnp.evaluation.subselection_output.TableOutput table for a species subselection, where rows are species and columns carry information regarding the performance of the species in the model run.
- subselection_species_codes: list[str]
list of species codes for which this table will be construed
Initialization
- add_to_table_data(master_dict: dict, species_obj: mnp.species_models.species_model.SpeciesModel)
Add data from a species model object to the table
- master_dict: dict
dictionary with species model properties
- species_obj: SpeciesModel
A speciesModel instance
- create()
Create the detailed table.
- species_models: list[SpeciesModel]
list of SpeciesModel objects, from which information on the species performance in the model run is extracted.
- class mnp.evaluation.subselection_output.SummaryTable(detailed_table: mnp.evaluation.subselection_output.DetailedTable, output_path: str)
Bases:
mnp.evaluation.subselection_output.TableOutput table for a species subselection. Table contains viability classes as rownames, species group names as columns and values are counts for each viability-class/species-group combination.
Initialization
- name = 'summary_table.csv'
- create()
Create the summary table.
- detailed_table: pd.DataFrame
table from the DetailedTable class
- class mnp.evaluation.subselection_output.SubselectionMap(geospatial_profile: rasterio.profiles.DefaultGTiffProfile, output_path: str = '')
Bases:
mnp.evaluation.subselection_output.SubselectionOutput- abstractmethod create()
- to_file()
- class mnp.evaluation.subselection_output.KeyPopulationsCountMap(geospatial_profile: rasterio.profiles.DefaultGTiffProfile, subselection_evaluation: mnp.evaluation.subselection_evaluation.SubselectionEvaluation, species_models: weakref.ReferenceType, output_path: str = '')
Bases:
mnp.evaluation.subselection_output.SubselectionMapSpecies GeoMap with the number of keypopulations exisiting at each pixel location
- geospatial_profile: DefaultGTiffProfile
profile of geospatial output
- output_path: str
output path
Initialization
- content = 'key population count'
- create()
- class mnp.evaluation.subselection_output.AssignedSpeciesMap(subselection_evaluation: mnp.evaluation.subselection_evaluation.SubselectionEvaluation, parameters: mnp.config.MNPParameters, land_types: dict, output_path: str = '')
Bases:
mnp.evaluation.subselection_output.SubselectionMapSpecies GeoMap with the number of species assigned to the combined land types in each pixel location Ook wel bekend als de TOEKENNINGSKAART.
- species_codes: list[str]
list with species codes
- geospatial_profile: DefaultGTiffProfile
profile of geospatial output
- output_path: str
output path
- land_typesdict
output from read_aggregated_map()
Initialization
- content = 'assigned species based on land type'
- write_explanatory_table()
Write CSV file with species count per land type
- parameters: MNPParameters
output from make_parameters
- land_types: dict
dictionary with land type NPZ files read from file as values, output from read_aggregated_map()
- create()
Calculate an array where each cell value identifies the number of distinct species from this subselection assigned to all land_types occuring in that cell.
- suitability_indexes: pd.DataFrame
DataFrame with land type suitability indexes
- land_types: dict
dictionary with land type NPZ files read from file as values, output from read_aggregated_map()
- to_file()
- class mnp.evaluation.subselection_output.HotSpotsMap(geospatial_profile: rasterio.profiles.DefaultGTiffProfile, assigned_species_map: mnp.evaluation.subselection_output.AssignedSpeciesMap, key_population_count_map: mnp.evaluation.subselection_output.KeyPopulationsCountMap, output_path: str = '')
Bases:
mnp.evaluation.subselection_output.SubselectionMapFraction key populations map.
- geospatial_profile: DefaultGTiffProfile
profile of geospatial output
- output_path: str
output path
Initialization
- content = 'fraction of assigned species with a population reaching at least a key population in size'
- create()
Calculate Hotspots map, also known as fraction key populations map
- assigned_species_map: AssignedSpeciesMap
Map with assigned species count per pixel
- key_population_count_map: KeyPopulationsCountMap
Map with key population count per pixel
- save_qml()
Add QGIS QML template file to output for file formatting
- to_file()
- class mnp.evaluation.subselection_output.LandTypeMap(subselection_evaluation: mnp.evaluation.subselection_evaluation.SubselectionEvaluation, land_types: dict, parameters: mnp.config.MNPParameters, output_path: str = '')
Bases:
mnp.evaluation.subselection_output.SubselectionOutputQGIS qlr file pointing to the land-types map in <cover>inputland_typesland_types.tif QLR file is populated with land types only that are coupled to one or more species in the species subselection.
Initialization
- create()
- save_qlr()
- to_file()
- class mnp.evaluation.subselection_output.QGisLayers(subselection_evaluation: mnp.evaluation.subselection_evaluation.SubselectionEvaluation, layer_type: str, species_models: weakref.ReferenceType, output_path: str)
Bases:
mnp.evaluation.subselection_output.SubselectionOutput- create()
Create QGIS QLR layer files for the tif files of the species in the subselection.
- Concerns:
- outputhsi<species_code>.tif –>
outputspecies_subselections<selection_name>hsi_maps<species_code>.qlr
- outputenvironmental_factor<species_code>.tif –>
outputspecies_subselections<selection_name>environmental_factor_maps<species_code>.qlr
- outputclustering<species_code>.tif –>
outputspecies_subselections<selection_name>population_maps<species_code>.qlr
- layer_type: str
currently supported are [hsi, environmental_factor, habitats]
- species_models: list[SpeciesModel]
list of SpeciesModel objects
*.qlr on disk
- to_file()
- mnp.evaluation.subselection_output.identify_land_types_per_species(suitability_indexes: pandas.DataFrame, species_codes: set[str], land_types: dict)
Identify how many species are coupled to each land type, considering only the species in this particular subselection and only the land types available in this MNP run.
- species_codes: set[str]
set of species code strings
- land_types: dict
dictionary with land type NPZ files read from file as values, output from read_aggregated_map()
- suitability_indexes: pd.DataFrame
DataFrame with land type suitability indexes
Dictionary with species_codes as keys and list of land_types as values
- mnp.evaluation.subselection_output.add_output_to_subselection(evaluation: mnp.evaluation.subselection_evaluation.SubselectionEvaluation, output_pathway: mnp.preparation.io_pathways.OutputPathway, parameters: mnp.config.MNPParameters, species_models: list[mnp.species_models.species_model.SpeciesModel], land_types: dict[str:sparray])