mnp.MNP

Module Contents

Functions

prepare_input

Subflow to prepare input for processing. - creates directories - copies all input files - reads land type map and environmental factor maps - determines overlap between all provided rasters - creates geospatial profile when running with precalculated HSI rasters - makes the parameter database

evaluate_models

Generate all additional output aside from the standard tables.

run_and_evaluate

Run and evaluate species models and evaluate species subselections.

save_config_and_log

mnp

Run the Model for Nature Policy on the given configuration.

Data

DATA_COVERAGE_TIF

API

mnp.MNP.DATA_COVERAGE_TIF = 'spatial_data_coverage.tif'
mnp.MNP.prepare_input(parameters: mnp.config.MNPParameters, input_pathway: mnp.preparation.io_pathways.InputPathway)

Subflow to prepare input for processing. - creates directories - copies all input files - reads land type map and environmental factor maps - determines overlap between all provided rasters - creates geospatial profile when running with precalculated HSI rasters - makes the parameter database

config: ConfigParser

Configuration for current run

input_pathway: InputPathway

the input pathway describing the operations to be done on the provided input

land_types:dict

The land type map as a dictionary with land type codes as key and arrays as values

environmentals

Dictionary with the name of the environmental factor as keys and their corresponding arrays as values

complying_species: set

which species have all the needed information required for running

parameters:dict

databases containing all domain parameters, like species traits and group traits

mnp.MNP.evaluate_models(output_pathway: mnp.preparation.io_pathways.OutputPathway, parameters: mnp.config.MNPParameters, species_models: weakref.ReferenceType, land_types: dict[str, scipy.sparse.sparray])

Generate all additional output aside from the standard tables.

output_pathway: OutputPathway

class describing which output to generate

species_models: list[SpeciesModel]

list with a model object for each species in this run

subselection_evaluation: list[SubselectionEvaluation]

list with an evaluation object for each species in this run

parameters:dict

databases containing all domain parameters, eg species traits and group traits

land_types:dict

The land type map as a dictionary with land type codes as key and arrays as values

mnp.MNP.run_and_evaluate(land_types: dict[str, scipy.sparse.sparray] | None, environmentals: dict[str, scipy.sparse.sparray] | None, parameters: mnp.config.MNPParameters, output_pathway: mnp.preparation.io_pathways.OutputPathway)

Run and evaluate species models and evaluate species subselections.

Running a model is: 1. make HSI map 2. do clustering (make populations) 3. evaluate clusters

land_types:dict

The land type map as a dictionary with land type codes as key and arrays as values

environmentals

Dictionary with the name of the environmental factor as keys and their corresponding arrays as values

parameters

species_models: list[SpeciesModel]

list with a model object for each species in this run

subselection_evaluation: list[SubselectionEvaluation]

list with an evaluation object for each species in this run

mnp.MNP.save_config_and_log(parameters: mnp.config.MNPParameters, config: configparser.ConfigParser)
mnp.MNP.mnp(config: configparser.ConfigParser)

Run the Model for Nature Policy on the given configuration.

config: ConfigParser

Configuration for current run